Relation between peptide backbone solvation and the energetics of peptide hydrogen bonds.
نویسنده
چکیده
The H-bond inventory approach is used commonly to interpret data involving changes in the number or types of protein hydrogen bonds. I point out here that this approach gives an incorrect answer either for the standard free energy or enthalpy of the reaction between simple amides and water. On the other hand, an electrostatic solvation approach fits almost within error the polar solvation free energies of small molecules, including amides. The electrostatic solvation approach is used here to discuss the relation between peptide backbone solvation and the enthalpy change for forming an alanine helix.
منابع مشابه
Weak Interactions in Protein Folding: Hydrophobic Free Energy, van der Waals Interactions, Peptide Hydrogen Bonds, and Peptide Solvation
Hydrophobic free energy has been widely accepted as a major force driving protein folding [1, 2], although a dispute over its proper definition earlier made this issue controversial. When a hydrocarbon solute is transferred from water to a nonaqueous solvent, or a nonpolar side chain of a protein is buried in its hydrophobic core through folding, the transfer free energy is referred to as hydro...
متن کاملLimited validity of group additivity for the folding energetics of the peptide group.
The principle of group additivity is a standard feature of analyses of the energetics of protein folding, but it is known that it may not always be valid for the polar peptide group. The neighboring residue effect shows that group additivity is not strictly valid for a heteropeptide. We show here that group additivity fails seriously for peptide groups close to either peptide end, even for a ho...
متن کاملA theoretical study on quadrupole coupling parameters of HRPII Protein modeled as 310-helix & α-helix structures
A fragment of Histidine rich protein II (HRP II 215-236) was investigated by 14N and 17O electric field gradient, EFG, tensor calculations using DFT. This study is intended to explore the differences between 310-helix and α-helix of HRPII both in the gas phase and in solution. To achieve the aims, the 17O and 14N NQR parameters of a fragment of HRPII (215-236) for both structures are calculated...
متن کاملThe dominant interaction between peptide and urea is electrostatic in nature: a molecular dynamics simulation study.
The conformational equilibrium of a blocked valine peptide in water and aqueous urea solution is studied using molecular dynamics simulations. Pair correlation functions indicate enhanced concentration of urea near the peptide. Stronger hydrogen bonding of urea-peptide compared to water-peptide is observed with preference for helical conformation. The potential of mean force, computed using umb...
متن کاملSecondary Structure Effects on the Acidity of Histidine and Lysine-Based Peptides Model; A Theoretical Study
In this study, the effect of the secondary structure of the protein on the acid strength of three structures of random (R), alpha helix (α) and beta sheet (b) were investigated theoretically. These structures are related to the cationic amino acids of histidine and lysine in the polypeptide chain of eight-glycine residue. Computational methods at the HF, B3LYP, X3LYP and M05-2X levels in t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical chemistry
دوره 101-102 شماره
صفحات -
تاریخ انتشار 2002